
_IIIIIIIIIIIIIIilIIIII!IIiilI
PB96-152228 Infmm_lan b our _u,

INSTRUHENTED ARCHTTECTURAL
SYSTEH

SIMULATION

STANFORD UNIV., CA

JAN 87

C

!,

!

January 1987 Report No. STAN-CS-87-1148
Also tsumbered KS1.-86-36

IIIUllIIlibIIIIii11111IIIill
PB96-152228

An Instrumented Architectural Simulation System

by

Bruce A. Delagi, Nakul Saralya, Sayuri Nishimura, and Grog Byrd

I

L ,..;, ',

Department of Computer Science

Stal,ford Universiff
Stanford, CA 94305

"_:-,o - ='b- ._,:7
.../

g I[OIIplNtrrllf_ _l CO'ITElllfCl
NIMIQ_ TIlcf_¢lH Irlforn14illt)n _arWCl

,ECuRITY CLASSIFICATION OF TF.tS PAGE

!11111111/11/11/111111111111111REP.ORT ,OOCUMENTAT,ONPAGE
u,,_.,.-P_B96-152228

2a SECURITY CLASSIFICATION AUTHORITY

2b DECLASSIFICATION/DOWNGRADING SCHEDULE

4 PERFORMING ORGANIZATION REPORT NUMBER(S)

STAN-CS-87-1148

NAME OFPERFORMINGORGANIZATION
Computer Science Department

. ADDRESS (O, State, an ZIP CO0_)

Stanford University

Stanford, CA 94305

Ba. NAME OF FUNDING / SPONSORING J
ORGANIZATION IDARPA

_k. ADDRESS (Crty, State, and ZIPCode)

1400 Hilson Blvd

Arlington, VA 22209

11. TITLE (IncluO_ _cur,_ Oaulhcatlon)

An Instrumented Architectural

6b OFFICE SYMBOL
(If #pplicable)

Sb OFFICE SYMBOL

(If a_licalWe)

I
lb RESTRICTIVE MARKINGS

3 DISTRIBUTION/A_AILABILITY OF REPORT

Approved for public release:
Distribution unlimited.

S MONITORING ORGANIZATION REPORT NUMBER(S)

7l NAME OF MONITORING ORGANIZATION

7b ADDRESS(Ci_/, Stare. and ZIPCO#e)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F30602-85-C-0012

10 SOURCE OF FUNDING NUMBER_

PROGRAM
ELEMENT NO

Simulation System

12 PERSOIWAL AUTHOR(S)

Bruce A. Delaqi I Nakvl- S_r_iv_ SB,luri

13i TYPE OF REPORT i13b TIME COVEREDTechnical FROM TO

16 SUPPLEMENTARY NOTATION

1

Form ApprOved !
OMB No 0704.0t88

Exp Date Jun30. 1986

!

WORK UNIT J

ACCESSION N(_

Nishimura. Grp_ Rvrd

14 DATE OF REPORT (Year, Month, Day)1987 JanlJarv ?q
lS PAGE COUNT74

17 COSAT_ CODES J 18 SUBJECT TERMS (Contmue on re. trse ,f neceS,t,_r_ ar_ identify by block number)

IFIELD I GROUP 1 SUB.GROUP

19 ABSTRACT (Comt, nue On reverse if neceX,Wlry Ir_ edent_Py by blo<k numt_r)

S_mtllat_oll of s._._tems:st :u, cNchitectural level can offer an effective way to study critical
design chowues_f (l) the performance of the mmulator is adequate to examine desil_ns .'xecutin_
sT_n=f'ica,t ,:ode bud=as -- nut just to.,, problems or small application fragments, (2) the details
,_t the +_Irnul[ttlotl im.ltnde the _'r=tncaldetails of the design, (3) the view of the design presented
h,. the ,,Itl'Jtll,tlot tl)strtln+ent;ttlOtl I_ads to useful insig,hts on the problems with the design, am+l
I.£) there L., enultgh l'le\lhll=t) _1 tile simulation s_stem so that the aski,g of unplanned
que_t_on_ _ nut xupple_d h) the v,ei_ht of the mechanics _nvolved in _11akiI_ chan_es elth_r

t+ the de,,i,..,n t, _t.,, m¢;i,,ur+n+et_t. A sm}ulation s),stem with these Boals is described together

v,_th the ,tpproach to _ts _mplemet|tation. Its application to the stud), of a particular class oi"

mUItlprt)cc:i..,or hard_sarc ,+.',stem archlte(;tures is illustrated.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT |21 ABSTRACT SECURITY CLASSIFICATION

_1 UN_LAC, SIFIED/UNLIMITED r'J SAME AS RPT [_ DTIC USERS !
22-1 NAME OF RESPONSIBLE INDIVIDUAL j2+bTELEPMONE Ur_ludl AreaCO_e) J22c OFFICE SYMBOL

I I

DD FORM 147], 84 MAR 03 APR 10Ft,on rely bt ulld unt,I exhausted SECURITY CLASSIFICATION O¢ THIS PAGE
All other ed,t,ons ate obsolete

+. , ,, + , • , ,
• ' "_-_ .'+...+..:-_ :_:__...+-=+._ .:.._.... --_+.._, :.uL_........ :..L ,". ++.............. ' "";_+'_*'=c_._ '.... __:'_ u..,,,_,"++"._'+''W''_

Knowledge Systems Laboratory
Report No. KSL 86-36

January 1987

An Instrumented Architectural Simulation System

by

Bruce A. Delagi, Nakul Saraiya, Sayuri Nishimura, and Greg Byrd

KNOWLEDGE SYSTEMS LABORATORY

Computer Science Department
Stanford University

Stanford, California 94305

WORKSYSTEMS ENGINEERING GROUP

Low End Systems and Technology
Digital Equipment Corporation
Maynard, Massachusetts 01754

PROTECTED UNDER IHTERNATIONAL COPYRIGHT

ALL RIGHTS RESERVED.
NATIONAL TECHNICAL INFORMATION SERVICE
LI.S. DEPARTMENT OF COMMERCE

This work was supported by DARPA Contract F30602-85-C-0012, NASA Ames
Contract NCC 2-220-Si, and Boeing Contract W266875. Greg Byrd was

supported by an NSF Graduate Fellowship and by the Stanford University
Department of Electrical Engineering.

SIMPLE/CARE 29 Januar) 1987

Table of Contents

1 I_!FRODUCTION

1.1 Design Time Interaction And Run Time Operation
2 STRUCTURE AND COMPOSITION

2.1 CARE Base Components
2.2 CARE Composite Components
2.3 Automatic Composition in CARE

3 SPECIFYING BEHAVIOR
3.1 Behavioral Rules
3.2 Using Methods

4 INSTRUMENTATION
4.1 Component Prol_es
4,2 Instrument Specifications

5 EXAMPLE PANELS
5,1 Point Plot Panels

5,2 Scrolling Line Plot Panels
5.3 Self Scaling Line Plot Panels
5.4 Boxes and Lines Panels
5.5 Scrolling Text Panels
5.6 Noting Simulation Parameter.s
5.7 An Iqstrument Screen

O USING PROGRAM DEVEI.OPMEN'I" FOOLS
7 CONCLUSIONS
8 ACKNOWLEDGEMENTS

2
2
4
5
6
6
t-

-/
8
8
8
9

11
11
12
12
13
I4
15
16
16
20
21

List of Figures

Figure l: Design Time Intera_.'Lions and Run Time R¢presentation_ 3
Figure 2: Hierarchical Composition 4
Figure 3: Graphic Structure Specifi_.'ation 5
Figure 4: Example Condition/Action Behavaor Rule 7
Figure 5: Instrument System Org:mizatlun 9
Figure 6: Instrument Probe and Panel Relaliunshlps 10
Figure, 7: Poinl Plol and Scrolling Line Plot Panels I I
Figure 8: Site Correlation Panel Specification 12
Figure 9: 5)stem History Panel Specification 12
Figure Ilk Self S_:aling Line Plot Panel 13
Figure I I: Operator-Network Panel Spe_:iflcatJon 13
Figure 12: Boxes and Lines Panel and Scrollinz_ Text Panel 14
Figure 13: Mapping Panel Spe_':fi_'ation 14
Figure 14: Producer Limited Process Panel Specification 14
Figure 15: Parameter Menu 15
Figure 16: Annolation Panel 15
I:i_ure 17: O_erseer Instrument 16
Figure 18: lnspectialg Simulated Components 17
Figure 19: [)ehugglng A Simulation 18
Figure 20: Changing Appllcall_)ll Code 19

t .

, ', . 'r'b, ,

SIMPLE/CARE 29 January 1987

A B,STRAC.'r

AN INSTRUMENTED ARCHrI'ECrURAI. 51MUI,ATION SY.%"rEM

Simulation of systems at an architectural level can offer an effective way to study critical
design choices if (1) the performance of the simulator is adequate to examine designs executing
significant code bodies -- riot just toy problems or small application fragments, (2) the details
of the simulation include the critical details of the design, (3) the view of the design pre.,,enied
by the simulator instrumentation leads to useful insights on the problems wiih the design, alld
(4) there is eilough flexibility, in the simulation system so that the asking of unplanned
questions is not suppressed by the weight of the mechanics involved in making changes either
in the design or its measurement. A simulation system with these goals is described together
with the approach to its implementation. Its application to the stud), of a particular class of
multiprocessor hardware system architectures is illustrated.

i--_ . ,
]r _ _ r • I ..

....................... : _.t +....... 7............................ "...+' '...........

SIMPLE/CARE 29 JanuaD 1987

1 INTRODUEHON

Simulation system,s are quite uf't_n de,,eloped _n the context of a particular problem. -I0 a
degree, this is true for SIMPLE, an event based simulation s_stem, and CARE, the computer
array emulator that runs on SIMPLE. I The problem motivating the development of both
SIMPLE and CARE was the performance stud? of 100 to 1000-element multiprocessor s)stems
executing a set of signal interpretation applications implemented as "I000 rule equivalent
expert systems" [2].

A set of constraints pertinent to this problem governed the design of SIMPLE/CARE. The
applications represented significant bodies of code and so simulation run times were expected
to be an important consideration. Moreover, the issues involved with the intera_:tions of
multiprocessor system elements were sufficiently, utlexplored prior to sirnulation that
simplifications in the CARE system m_del, specificall_ with respet:t to elemeni interactions,
were suspect. This need for detail was. of course, in tension with the need for _;imulation
performance. The ways that stmulated system components would be composed into complete
systems was initJalb difficult to bound. Further, it was clear that the models of these
components would be elaborated o,,er tmle and would undergo substantial change as design
concepts evolved. It was also clear that the ways of examining the operation of these
components would change independentl) (and at a great rate) as early experience indicated
what alternative aspect of s_stetu operation should have been monitored in any given
completed run.

The design goals that emerged then were (1) that the simulation system should support the
managemenl or substantial flexibilit) with regard to simulated system structure, function, and
instrumentation and (2) that. in order to atcomplish runs in acceptable elapsed times, the detail
or sinlulatJon should be particularly focused on the communications, process scheduling, and
context switching support facilities of the simulated system -- that is, on just those aspects of
system execution critical to multiprocessor (as opposed to unipJocessor) operation.

I.! Design 'rime Interaction And Run Time Operation

Encapsulation of the state of design components with the procedures that manipulate that
state is one clear way to manage design evolution. Such encapsulation partitions the design
along well defined botlndarie_. Coml)onerll:S (h_ alid large) illtelact with other uonlponents
only through defined pcwls. Connections between components terminate at such ports. When
a system simulation is initialized, connections are ,.raced so that for evel'_, port, the simulator
knows the connected (termim_ting) ports together with their cot_taining components. Unce such
initialization is complete, that is, throughout the simulation run, assertions about the state of a
port of one component can be diret'tly translated to asserttons about the state of connected
ports of other components.

Partitioning issues of system slruclure, component behavior, and inslrumenhllion inK) separate
domail_S of consideration helps in real'aging a design that is both fluid and complex System
structure, that is, the relationship I_etween components, can be specified through use of an
interactive, graphics structure editor and is largel_ Independent of component function per se.
Component behavior is encapsulated in a set of deftnltlons pertinent to the given class of
componen'.. Each component in a SIMPLE simulated s)stern is a member of a class defined
for that component t._pe. Instrumenlation is automatlcall._ and invisibl) made part of the
definitton of each simulated compone_lt that is tu he monitored during a run. This is done b._
arranging that the class of ever._ component to he non,toted is a specmtization of the general
instrumented-box class. The basic dat_ structures and procedures for monitoring simulated
¢onlponents and lll{lllltilillln_ the Ul'_,alltl{lllL)llill relat_t)nships between each component and its
related instrulnentatlt)n are inherited Ihaou_.h this _eneral, ancestral class and are thus made a
separate, suhstantiall_ _ndepender_t con._lde_atton tn the design.

ISIMPI F and L'ARF _c_c dc_cl,_pt'd In tlu: ,tulh,,I, ,I Ilk k Ih,V, lt'tl_c S_._lerlls I,Ib ill Staufi_rd LIm_e_,iu._ SIMPI.F

_ ,i de,,tt'ndt'nt uf PAl I ._1)1(/ [I I ,,pt,mt/cd r_r the ,t,h._cl ,,! P'_l I _,r)l(/'_ ,,_p.tblht_t'_ r_h:',aut It.) h_c_,ll_.ltttal tll..._l_!ll

l;ilpttll_ ,l)'ld ,,ul)ul,mun h is ..,,llt!.t.u ll_ /,.'tah'w I-l] ,old t.._ll)l.'llil _, I!.111_ t)ll S_mb,_lu._ 301_3 llid_hlllC_ i|llt.l 1"1 Fxph_ler_.

,:_ _,..: , i_,,, ..,,,,_,... ,..,._,_/., ,,_.,,_,,_....... ,,,,,,.......... _,,._,,,.. ;;...................... ._.,,..,,,,h

SIMPLE/CARE 29 Januar) 1987

A further partitioning of concerns ts emplt,yed to separate out the definition of the
application programming langual_e interface and its support (as provided by CARE) from the
underl_,ing information _'low control go_,erning component behavior. The behavioral
descriptions o£ componetlts (which are expressed :ts sets of condition/:tction rules) deal
genericall_ with gating information, independentl!, of the structure of the it_f_)rmation, betv, eet,
ports of the component and its internal state variables. This is separated in the component
model definitions from the funct_o_ls performed to create and manipulate the information so
gated. The nimulated implementation of the application programming language support
facilities, on the other hand, relies onl2_ on the specifics of the information and its structure
and plays no part in gating it between the components of the system. Changing the definition
of the application language is thus done independently of changing component flow control
behavior. The application programmer and the implementer of the application language
interface may use whatever data structures seem suitable to them, be the_ numbers a,d
keywords or proced,=re bodies and execution environments. The simulation s_stem doesn't c._)'e.

The component probe definitions, that is, the specifications of what information should be
captured for each component type, are separated from the descriptions of the behavior of such
components. In designing for flexibility in the instrumentation system, it turned out to be
important to further divide the information presentation from the information collection
issues. The mapping from particular component probes to particular instrument pane/s and the
transformations to be applied to the information as it passed from a given kind of probe to a
given panel (and between panels) is captured in the instrument speciJTcation. This is a
definition of what kinds of panels ;are included in an instrument, ho_ the_ fit on an
instrument screen, how the), are labeled and scaled, and what information from which kinds of
probes are displayed on each panel. The _nstrument specification also indicates what kinds of
probes are to be connected to which kinds (that is, which classes) of components in the system.

Ippllontlon ¢o_
I

............

_rnu]_tt_n r_n

Figure I: Design Time I:_tera_:tto),s and Run Time Representatio_s

Putting together all the definitions of components, component probes, panels, instruments.
applications interfaces, alld inter-component relationships is done i. a set of design t_me
interactions by a s_stem architect, These interactions are used by the simulatlon s2,stem to
generate efficient run time representations so _hat simulation performance goals can be met.
Figure 1 illustrates the partition between design time interactions and simulation run time
operation. Structure editing pulls together components from the component librar> to produc:e
a circuit. Associated with some components m the I_brary, there are definitions for the syntax
and undcrlyi._ mechanisms of a multiprot.'essor applications language. These specif_ the

SIMPLE/CARE 29January1987

interfaceusedto provide the program input to the multiprocessor system being simulated. 2
The definitions used to generate component probes are associated with each library cotnponent
to be monitored. There may be several such definitions, each appropriate to measuring a
different aspect of the associated component's operation. An instrument specification selects
from these definitions, elaborates them with selections from a set of probe opecation modules
to include any pre-processing (for example, a moving average) to be calculated, b.,, the probe,
and indicates under what conditions what hlformation from the probe is to be sent to which
panels of the instrument and how it is to be transformed and displayed there, lt|strument
specifications also partition the screen among the panels of the instrument. The end product
of these design time interactions is at+ instrttmented circuit and an instrument. The instrument
comprises a set of instrument panels and a set of cor|straints relating them to the instrument
screen. The instrumer|ted circuit ties tggether instances of cornponer|ts, probes, and panels for
a simulation run.

For each defined class of component and its associated probes, the design time it+teractions
produce code bodies that accomplish sin'lulation operations during a run. It is an attribute t)l"
the underlying Lisp base of the simuhttion s_,stem that changes in these definitions ha,,e
immediate effect even during a simulation run -- an important capability during debugging.

2 STRUCrURE AND COMPOSrrloN

Design time illteractiotls to specify a s)'s[eill Illclude the establishment of europe.merit

relationships. Such specifications cat+ be _ai¢l to accumpli,';h the compu._itiot_ or the s_ste|tt
from its components and so define its structure. SIMPLE supports hierarchical composition:
components may be described in terms of a fixed set of relationships atuong their sub-
components. Additiotlall.v, such composite components may have function be:fond what can be
inferred strictly from their composition. All this can therl be included a higher level
composite (as shown in figure 2) and so on indefinitely until the top level "circuit", the s_,,stem
structure, is reached.

!
Figure 2: I-I_erarchlcal Composition

The behavior induced on a compus_te component frul]l its parts changes according to the
beha_,tor of its paris. Thus, for example in figure 2, if at any time during a sinltllation the
futtctton of CARE ¢,perator components ts chatlged b> redefining their operation, the hehavwor

_||e LIII_LI,I_21: pllllll|l_.t'_ ,,ur_phcd t,m he u,,ed to) de'tint: mult+plt_.,.t:,,_,_+r I;ll|_tl[l_l_ Illlltr[;l_._ ltH _lth¢:l "_ha_etl-,,al'ial_,lc

tit v,lluc-p,t,,_0n_ p,_rath-i_n,, A_ ",upphc_d. lh,: llm_:tm_c IliWrf"ttt' I_tltlt uI1 thc_c prmllt|V¢:'_ _ttppurt_ vahne-pil'_lll_: oil

tl:atlr,, hetwc.'c.'rl _l'qt'tt,. l_tlt ,l'_..:'.rll,l[l'_¢ illtt.tl,l_.t',_ t,lll I1c I,llld h,r..'e I)et'll) e _.1) (le|-illetl i1! tcrrll'_ tit lilt- gl_.ttll

, i ", i

:.;,;¢IPLE/CARE 29 January 1987

of the nine-site grid is in immediate correspondence. 3

Composition is described graphic;_ll_ ,rod in/eractivel._ in SIMPLE by picking a previousl_
specified component type from a menu, placink: it in relz_tionshil) to other cOtnl_Onent_ with
"mouse" movements, ,'and, through the same means, specifying the connections between its
selected ports and those of other components (as indicated irl figure 3).

_dd @o* .

Red L,ne_ .

A_ CO_taCt_ .

'!_'_ _OmDOnent$
_3_ace aoun_ln9 _0- .

EO,t 8ehav,Or

Mod,_. Attr_butl$

[nstlntJate _0.

_rOtOf':l C_O0_I_I
In,Deer C_moo_ent

[_sol¢I Wor|_

,_M_rIGE MOPE

l$[t| I Le..el

Figure 3: Graphic Structure Specification

Through another menu selection, ports can be defined for the new composite component so
that it, in turn. can be fitted into yet higher level structures. Such external ports can be
connected directly to ports of sub-components "within" the composite. If this is done.
information appearing on that external port will be the responsibility of the connected sub-
component. By this same means, a component previously described as a base level component,
can be redefined as a composite of yet lower level eleme_lts as its design is elaborated with
further details.

Components and (internal) connections can also be deleted from a library component and
replaced with substitute components. After all sub-components and connections have been
added, deleted, elaborated, and replaced a._ required, the completed structure can then be entered
into a library of components and used m turn to compose higher or equivalent le,,el
COIII pollell IS.

2.1 CARE Base Compo.ents

CARE suppliesa small Iibrar) of s:,stem level base component types. Currently these are the
fret-input, the net-output, the fifo-bufJer, the operator, and the evaluator. The net-input, net-

?lHowcver, for rea:,oll_ ttJil_.'t'rnltlg Sllllulztt.m perf'ormanc_: drttl hl;:t',i|tl:_ ur (heJl rtlatlv¢l._ low frequutlt.:.',, t'hatlg¢_ Ii1

the rltllllber :ltld ililll|C_ ill the IIItertHII .,tare ',:mablc,_ of tOlltpollttllt,.i ;tlld the structural rel;ttiot_hips bet,,vee_) sub-
CUlltpOllltllt5 of ,I COlll[1u$1te dl'¢' I1ut rufludud m a. Mrt:ad5 II)ntUntlutud ¢lr_.ui(. f..'hall_S m the lltlerlllll '_trtrctur¢ ol a

CARF _llt, hbrar_ tomptment, t't_r e'_anlph:. ,.,,_11 he retleuted _,_I) m c_r_u_t_ m..,tant_ntt:d aftt:r the _h;m_e tt_uk eftt'tl.
F.r thi_ relt_t)ll dll(I t(_ rctlu_:r Iol|g term _turdge rcqu,r_lllel)t_ ,ind load IIIllC fur the l'l.llldalll¢lltall_ iterittiv_ _.'ir_uits that

we prtrllllril) _tt,d._, v,c rio nt_t ke_p frle_ tff m.,tant_,tted ,:lrcu_ts. Th=._ ;are IIl_t;.llltl;ited ;.1_i needed |'rofll 11 hlEth le',¢l
librar) t.'t.l111p_,m¢llt _lth the _,llltt¢ protot_ptv:d .,truttul_'.

- _ ' •

SIMPLE/CARE 29 January 1987

output and fifo-buffer accept (or block), route, and buffer transmissions. They do so in
accordance with a dynamic, flow-controlled, n_tllticast, cut-through communications protocol as
described in [3]. The evaluator does the real work of the application: evaluating the
application of functions to their parameters. The operator does the overhead work associated
with such evaluatiot+s: for example, scheduling processes and sending and receivit+g {but not
routing) messages.

In keeping with the objective of focusing simulation cycles on the aspects of the simulation
particularly relevant to multiprocessor operation, the behaviors of the net-input, net-output,
and fifo-buffer component classes are defined in fair detail, that is, at the register tra)_sfer
level. Routing operations are described procedurally and assumed to occur within a time set by
a parameter to the simulation. As indicated previously, the simulation of the operator and
evaluator is broken into two aspects: the control of the flow of information and the functions
performed on that information. The former is described in terms of SIMPLE behavior rules
(as documented in section 3), register transfer by register transfer. The latter is described
directly in terms of procedures and the simulated time taken by such procedures is modeled.
la the case of the operator, this is done .as a function of the nun_ber of storage cells
manipulated during an operator procedure. In the case of the evaluator, this is done as a
function of the execution time used by the machine executing the simulation, that is, the
simulation vehicle.

2.2 CARE Composite Co:nponents

The prototypical composite component supplied with CARE is the site. As supplied, it
includes net-inputs and net-outputs for up ;o eight "neighboring" components (generally other
sites), a net-input and a net-output with associated fifo-buffers for local receptions and
transmissions, and, finally, an operator and evaluator as described above. Specializations of the
site, for example, the torus-site, exist in the library to fit the site into alternative topologies by
supplementing the site routing and wiring p._ :_,dures as appropriate to the topology.

2.3 Aulomafi¢ Composifion in CARE

Although any connection of components cat_ be created by the means noted previously,, for
some repetitive, well patterned systems of connections, composition can be automated. The
CARE library includes a c_mponent, the iterated-cell, which represents a template for the
creation of composite compt,l,ents b), iteration of a unit cell. The unit cells (for example, the
torus-site) are specializations of other compo,lents _t'or example, tile site) as just discussed.
The specializations include a method for respoading to a request to provide a wiring list. Such
a list associates each source port of a cell with the corresponding destination port (in terms of
port names_ and the position) of the destination cell relative to the source cell in the iterated
structure. The iterated cell component uses this mformatioa to make the required connections
between each of its constituent cells.

3 SPECIFYING BEHAVIOR

SIMPLE is at) event based simulator. The behavit_r of a simulated component is described in
terms of responses to the events pertinent t.o that component. A component's response ma)
include consequent events to be handled b_, the simulator as well as direct operations on
component state. Assertion of conseqt|ent events and the responses to them (involving further
co,_s_ ces) drives the simulation. When there are no more events to handle, the simulation
is cO_ ._.

To maintain l)lodulal'tt} ill tt simulation S),Stelll, responses tO simulation evet+ts should be
local to the affected ctm)ptment and its defined ports, that is, its connection r.a the renlainder
of the simulated s.sstelU. The composttton s)stenl of the simulator maintains the relationship
between ports of one con)ponent and those of other components connected to then). Assertions

SIMPLE/CARE 29January1987

relativeto a port of a componentare thuss>stema(icallytr,qnsla(edto eventspertineht to
componentsconnectedto it. This is the ge,leralmechanismfor eventpropagationbetween
components.In a limited numberof cases,a directoperationon a relatedcomponentmaybe
appropriate. With fair warningabout its possibilityof abuse,a facility is providedto
accomplishthis.

3.1Behavioral Rules

The behavior of a component is described in terms of its re._ponses to pertinent events.
Each event stipulates the component affected, its port or state variable signalled with an
assertion, the asserted value, and the simulated "time" of the event. The time of an event may
be thought of as the "current" simulation time. Differences in event times represent the
temporal relahonship between events. Event times in SIMPLE simulations are monotonicall>
increasing.

For each type of component, there i_ a procedure to handle pertinent events, The arguments
to the procedure are those stipulated by the event (as just described). The procedure tests for
conditions and, as satisfied, asserts or directly effects consequent actions. The conditions ma_
include arbitrary predicates on the event parameters and the state variables of the counponent.

Event based simulators are based on the assumption that state and port variables remain
unchanged until explicitly modified. Synchronous designs, that is, those in which the
opportunities for state change are temporally quantized to a clock, can be modeled in such
implicitly asynchronous, event based simulators b_ asserting the clock signal on a port of each
and every clocked component of" the simulated s'/?tem. If only some of _ components in a
system need take action on each clock signal, there is an obvious i .efficiency in this approach
that is crippling for systems with even a modest number of components.

If, however, event times in an event based simulator are restricted to integers, the clock can
be assumed, All that is needed is a way to detect the event for which a boolean combination
of conditions as strobed by an assumed clock is first met. Primitive condition predicates are
supplied for detecting an: "edge" (a value changed by the current event) with a coincident
"level" (a value set before _he current event) of two ports or state variables of a component in
either of the two possible event sequences. The predicate both-states in the example
eva_uator behavior rule shown in figure 4 has these semantics.

; ;If the evaluator is tea@ and there is at least one runnable process..
((or (both=states Evaluator-Status 4 'ready Evaluator-Oueue-Status 'some)

(both-states Evaluator-Status 'ready Evaluator-Queue-Status 'full))
; ;.. make it current, start evaluation, and adjust status as per removal

(setq Evaluator-Status 'busy) ;block rule
(assert-state Evaluator-Status 'busy now) :next event
(setq Current-Evaluation (queue-take Evaluator-Queue)) ;noteproces,_

(user-evaluate Current-Evaluation now) ;execute it
(send self :evaluator-queue=decreased now)) :note change

Figure 4: Example Condition/Action Behavior Rule

Figure 4 illu._(racesthe generalityof SIMPLE behavioral descriptions. The underlying object-
oriented programll_ing s)stem, Flavors [4], in which SIMPLE is implemented provides For

direct reference of component state variables. The conditions and actions of behavior rules e'er
a compo_Lent then need only name the component's port or state variable (as stipulated in the
definition of that conlponent type) to get or change the appropriate value in the co)11ponent
instance for which the event is pertinent. Actions may include arbitrary procedures: for
example, the procedures user-evaluate and aueue-take in the given example.

4B))gOI)Vttlt[IUII, COlllpoll_'l)[_L[I[{ varmbl¢', _l'c _l)tL_))n _aizi),alit¢d f'Ofl)l,

SIMPLE/CARE 29 Januar_ 1987

3.2 Using Methods

The environment for the execution of the procedures defining responses to events include.,,
the state variables and ports of the component instance for which the event is pertinent.
These procedures are Flavor method._ [4] {in this case corresponding to the :ApplyRules
message) of the comptment t_,,pe and. as just noted, refer implicitly to the state vart,tbles of the
component instav_ce handling the event. Other methods may be defined for simulated
components: for example, the :evaluator-queue-decreased method invoked in figure 4.
Such methods aave proved to be a natural way to realize the functional operations or
components not described by behavior rule_.

The composition system leaves inrormati_m about the enclosing and contained component
instances for each simulated component in system defined stat_: variables of that conlponent.
With this information, methods directly, referencing the ports and state variables of such
related components ma_ be invoked as needed. This is a useful but sharp-edged facility,. The
warning about loss of modularity given previc, usly applies here.

(p

4 INSTRUMENTATION

The results of a simuhtion are primarily the insights _t provides into the operation of the
simulated system. The "insight" we frequently experienced using an early version of the
simulation system was that more interesting results could have been produced by the run just
completed if only the instrumentation had been different. With this in mind. the design for
the current versic,1 of the simulation instrumentation system was aimed at flexibility. -[his
was attained without significant performance impact by building efficient run-time system
structures before each run. as outlined in section 1.1, from the declarations defining the
instrumentation.

The organization of the instrun_entation _ystem is pictured in figure 5. rhe simulator
interacts with component instances through assertions, that is, calls on an assert function, in
behavior rules (the metkods assc3ciated with :ApplyRules messages). All instrumented
components are specializations of an instrumented-box (as well as other classes). After each
invocation of :ApplyRules for such compo,lents, the :ApplyRules method for a generic

instrumented-box is applied. This cau.,:es invocation of the :trigger met:od for each
component-probe associated with that con'_ponent. Six_ce this flow of measurements i.-;
accomplished by means invisible to the the writer of behavior methods for a component, the.
concerns surrounding component design are effectively partitioned from cotnl_Ot_ent
instrumentation. The remainder of this section details these "invisible" means used to

accomplish m_.osuren_ent flow during a simulation run as the measurements are staged from
components through component probes to instrument panels.

4.1 Component Prohes

The first filtering of events is done b> ,:proponent probes. Some events cause no further
measurement activit> since, as it turns out. ,or all events merit action on the part of the
instrumentation system. The parameters of the event and lhe ports and state variables of the
instrumented component dealing w_th the event are available to the component probe as are
the state variables of the probe itself. Each piece of the selected information is tagged _ith an
identif._ing ke._word and passed along as the parameters of the :trigger method along with a
keyword identifying the t._pe of componen, probe, a number representing the current event
t_me. and a pointer to the component w_th which the informatio,_ !_ to he _lssociated in the
display. This pointer mtght be to st)me component related to the o,e ac:t,,,lly handling the
event, for example, the co',11ponent enclosing it.

Comptment probes ma_, I_e composed of predefined probe operation modules to do standard
calculations (l'_r e\ample, moving averages) and then to forward the results to _elected panels.
In order to :tutumale the composition of probe_ to accornplish such operations, each of these
t_perat_ons is chained together h_ ln_,oking the method for that probe that is associated v, ith

SIMPLE/CARE 29 Januar._ 198"7,

:create

:create

instrument

(assert ...)

:copy :add

emplate-probe

:create

:ApplyRules

component
instrumented-box

:trigger

panel component-prob
:select < :calculate

:update

Figure _: Instrument S._stem OrganizaUon

the system-defined message name of the genertc next operation. Thus, the :tr'lgger" method
calls the :calculate method of the probe which, m turn, calls its :select. method which.
finally, calls the :update method of the selected panels associated with the probe. Probes are
composed b) naming them as special_zat|ons of appropriate probe operation modules (for
example a :calculate module tor mo_mg averages) as desired. The default, if no
specializations are stipulated, is to pass through information without change to all the panels
associated with a prob_.

Information flow between components and panels is accomplished b) the component probes
associated with each instrumented component. The creat_o|| of _uch component probes and
their associauon v, ith appropriate uompon_nts (1_._ exe_utlol| of :add methods) auuompllshes
the itlstrLilllell[;i[IOll of a ClI'u'LIIL. This 15 doll_' _Jletl till IIIS[l'Ufllelt 15 cl'¢[lted. Dtlrlllg

sirllulattotl illitJalilatlOll, [he L,OlllpOlÂen[s of the ClI'CLli[(,'l]|d [hell' SLh'_-conlooII¢II[S) [0 [le

instrumented are (recursively) examined by each tcmpl_zte probe clef|ned for the instrument to
see if the_ arc to be monitored. If so. the :¢ogy method for the siren t_mplate probe is
invoked to create a ne_ instance ot" the appropriate ¢on_ponent probe and add it to the probes
connected to th_ componenL Each templ_l[_ prol_e orevlousl> recei,,¢d th_ id_iltll'iers for the
panels to which it_ clones shuuld send infornlatlon. Th_se _ill be the panels identified whe|| a
conlponel}(probe _n_okes the ;update method.

4.2 Instrument Slleeific:ltiow_

The operations perfolm_d b._ an instrument panel are to:

, FDtJ tllfOl'tllall,_HI pre_,tott_l._ stored ,Icuordttlg to tile _.'ompot_lll potnter sUpplIed b_

[h_ : update tlletht)d;

-'.
• ,,.. "_, . .'

,_ . ,, ,,., ,,

i,

.. _ -_t _i'r"--_, _/_

'' u '

SIMPLE/CARE 29 January 1987

• LinA new data structures as needed (to save such information) to other such
structures of the panel;

• Save in these data structures the results of expressions that reference indi_.ated
keyed information from the :update p'Lrameters and the prior contents of the
structures;

• Send the results of periodk: anal>ses on the information associated with r, panel for
display b), the same panel or b_ some other; and

• Sho)v processed information in the manner specified for the panel.

The defaults for the panel operations suppl) the most cmnmonl) required specificatio,)s
implicitly, so simple operatmns are simpl._ specified. These defaults can be overridden as
needed and either predefined or user spe_.if'ied alternatives for the panel operations can be
selected in their place, Arbitraril._ complex (Lisp) expressions can be used to specif) the
transformations between the information provided b) a probe and that saved and displa_ed by
the panel.

These transfortr|ations and all lhe default overrides for the panel operations that are
stipulated in the instrument declaration are st.'armed when _ new instrument is ,:reated for a
simulation session. They are compiled at that time into code bodies referenced b_, run time
control blocks associated with each punel. A simulated s_stem is instrumented b_, examining
all of its con|l_onents altd ,qttachmg to each coi11potlen[the copies of template probes specified
b_, the instrument definition that are appropriate for the component (by means of calls on the
:copy and :add methoas for the probe). This can be a many to mai|_, rehttionshil_ as shown
in figure 0.

panels probes components

Figure 6: h|strumei|t Probe and Panel Relatio,ships

CoIllponellt l)rohes It) nleasure "load" and "lalellc>" are specified in the give, example for
ea_.'h operator and e_,aitliitor ill th_' _,'IIl,.tlJl. The "load" and current "comle(.'tiotI" for each net-
otttptJl i,_ also to h_ monotored, Some pa,els, for example the one showill_, "COllSunler-limJled"
processes, receive input', l'Iotn o))I._ one t._De of cotnponeill probe, those r)leasttring evaluator
latency. Others. such as the one 'lleilStlllll_ "p)_)¢css-lateti_..,," fe_.'eiv_ itipttts froH1 IT]ore thai]
one k'ind of p)ol)e (in this case, fr(.)m l)robes llleastlrtll_ operator lalen(:y as well ns those
llleastlrlng evalu;alOl lillellC_). /k ',_,a.', lllllsl thus h): pro_,tded to dasttIlguish the t.',pe of probe
sendlll_ illforlllitllOll to i| panel: lhts ts dcscrthed it) the t)ext s_.'lion.

It)

SIMPLE/CARE 29 Januar) 1987

Some probes send infornlation [o onl> one panel, for example, the net-output connection
probes. Others monitor information which is needed b_, several panels, for example, the
operator latency, probe, l'ransformation of the raw information provided b), a probe will need
to be specialized to the information expected b v each panel receiving it. A general way to
stipulate these transformations is stipuhtted in the next section.

5 EXAM-_LE- PANELS

Some example panels are described in this section to give a feel for the instrumentation
possibilities available in CARE and elaborate on how the requirements described in the
previous section for probe t_pe identification at a panel and per panel specialization of the
information provided b) a probe are handled.

S.I Point Plot Panels

The first panel (shown in the left half of figure 7) is an example of a point plot panel used
to generate a scatter plot. As an option, only points representing simulated activity over a
limited past history from the most recent event time are kept for display. In this example,
resource load 5 ilfformation is provided by the operator-load and evaluator-load component
probes attached respectivel_ to the operators and evaluators of the system.

SITE CORRELATION

St're A_ttaMltt_ Correlation
O

1.g '"

uE g.g

'_ g.6

u g.4

ot g.2
r ":::.': : : ' :

!

g.gg g.gg g.Bg l.gg

Operator

16

es

k q

SYSTEM HISTOK¥

Network & Operatoe-E_aluctor _ocd

8:

71_g 75365g

5%mulatecl T%me [_s]

Figure 7: Point Plot and Scrolling Line Plot Panels

The balance between the "availability" of the evaluator and operator of each site, that is, the
complements of their respective loads, is displayed during the simulation as events are
processed that chan_e this measure. In order to avoid capturing information at too fine a
temporal granularity, previously gathered reformation for a given site is overwritten if it is
within a given sampling interval of the new informatlon. Information that is beyond a given
histor) range is dropped. The scale of availabilities displayed is fixed between 0 and 1.0. The
panel specification to declare all this and to also stipulate the axis labels is shown in figure 8.

"_Rc,J_)tircc luatl f_ tlefmcd ,u, I I - I / (I 4. al_Sic_utc-qucuc-lcHFth)) wllcrc the a_grc$;,tc tlUCUC-lc,sth is the _uiI1 Uf

the lengths uF all tltlCtlc._ pru,.idtlt_ work Fur the I'¢_Utlrt.c.

11

SIMPLE/CARE 29 Januar._ 1987

'((("Operator") (0 1.0) (- 1 (:operator-load :busy))) : Bottom axis
(("Evaluator") (0 t.0) ((- 1 (:evaluator-load :busy)))) :Left axi.s
:find (find-sample-distinct (:simulator :time) .sampling-interval)
:show (recent-history (:simulator :time) ,point-panel-history-range 0))

Figure 8: Site Uorrelation Panel Specification

5.2 Scrolling I,ine Plot Panels

An example of a scrolling line plot panel is shown in the right half of figure 7. This panel
sums the loads seen by the resources in the simulated system and displays this as a strip chart,
the "system history". Some of the same probe load information used by the previous panel is
used in thi_ panel as well, but with different transformations defined in the panel specification
as shown in figure 9

'((("Simu1_ Time [us]") (,history-range) (:simulator :time)) :BoHum

(("Netwo..") (0 ,site;') (:net-output-load :busy save-sum)) ;Left
(("Processing") (0 ,._ites) :Righ/

(average (:evalua;or-load :busy save-sum)
(:operator-load :busy save-sum)))

:find (update-history (:simulator ;time) ,sampling-interval)
:show (recent-history (:simulator :time) ,h_,story-range 0))

Figure 9: System Histor._ Panel Specification

Line plot panels may have two independentl_ staled vertical axes. For the system histor,,
panel shown, the sum of network loads as indicated by the tier-output components of the
system is plotted against the left ari'_ and the sum of the processing loads provided by the
current average of the sums of the operator and evaluator loads is plotted against the right
axis. Event time is plotted on the horizontal axis. The update-history function uses the
component pointer to find the information previously saved for that component and records
the current event time as the (:simulator :time) so that it may be used to displa_
information correctly oil the horizontal axis. The current sums of the evaluator loads and the
operator loads nleaSt, l'ed b v the s_,stem are stored in a record for the given event time (or a
prior event time within the specified sampling interval) by the calls to the save-sum function
specified as part of the save operatio,,.

5.3 Self Scaling I,ine Plol Panels

Figure 10 illustrates both the self scaling of displays and the use of a display, anal._sis
operation. For this self scaling line plot panel, twu pieces of data are collected for e'lch
operator i_ the s)stem: the load 011 the operalor, shu_n on the rio, h/ axis. and tile h/lent) of
the information it has most recentl._ received. This I_Lst item is provided b) the operator
latency probe Jn tWO parts: (1) the Interval between the cre_ttion of the _nformation and its
receipt by the net-input fet'd,_l_ the operator and {2) the interval between S/loll receipt and the
operator taking action on it. There are Ihus two curves plotted on the left axis. l'he
specification stipulates a list for Ihe left axis display,. The elements of this list are the "net
delay" and the sum of this meusure and the "operator dehty" monitored b) the operator latenc._
probe. Si_lce both dela._s are non-negative, their Stlm must be at least as large as either tree
taken alone; the two curves m_h_ be superimposed but can not cross. The difference between
the two curves is the incremental delay, added b_ the operator.

Fhe panel specification for the operator-netwt;rk panel Is showu in figure 11. In addition to
transfl,rmations shown previousl), an _m_l_sis f/motion is stipulated for the .wnd operation of
the panel. The information saved from each of the probes sending :update messages to the
panel is tu he Sl_lted froln the greate._l to the least values of the associated sum _f dela_,s
clescribecl ah_e. Flus intormatwon is It) be s_tvecl as the opera/o, latency rank ;tnd used as such
to determine the position oil the hurlzontal axis that the dole) and load information will be
displa)ed

12

SIMPLE/CARE

OPERATOR- NETWORK

L,:_'_e:r_,:'.y& C,pe:r_',+.,.._rLoc_'d

5

L
a 4
t
_, ,'#

n

c -

W 8

1

,,_S 63

i A,
;I I I' ,,

9_ q I 'IF-7 F
,,!,,,,,,,,r I/

'4'4"
",,"
',',',','I",'/
4

-1.0

-0.'3

-06

U2

0 0
7 10 18 IG

17[.:1_'.I" ,.Rt 0 r" '.3

L
O
_t
d

29 January 1987

Figure IIh Self Scaling Line Plot Panel

'((("Operators") (I ,sites) (:operator-latency :rank))
((("Latency us")) (0 nil) :Second string: 90 degree baselineshU?
((:operator-latency (:net-delay (+ :net-delay :operator-delay)))))

(("load") (0 1.0) (:operator-load :busy))
:send (sort-arrays

,#'> (:operator-latency (+ :net-delay :operator-delay)))):operator-latency :rank))))

Figure II: Operator-Network Panel Specification

5.4 Boxes nnd I,ines I'nnels

Perhaps the most intuitively satisfying of the types of panels available is the boxes attd lines
panel, a graphic representatio, of a circuit showing its components and their interconnectio.s.
An example of such a panel is shown the left part of figure 12. This class of" panels uses
information left behind by the structure editor when the orcuit was defined. Its form is thus
automatically generated. The position of the components ("boxes")and lhe connections
between them ("lines") in the displa_ are used to a_i|nate s)stem operation. In the example
shown, the shading (or color) of the boxes is used to indicate the availabilit) of the e.a/uators
in the simulated system as the simulation proceeds. Darkest shades indicate highest availabilib,
that is, erupt> queues for utilization of the resourCe; lighter shades indicate lower availabilit),
that is, longer queues, The lines between boxes indicate communication paths that are in use,
that is, not ":free" at the time of the most recent show operation for the panel.

The panel specification for the mapping panel, all instance of a boxes and lines panel, is
shown in figure 13. There are two speoficatlons for the panel: one for the boxes and one for
the lines. The speciftt_tiou for boxes in the panel stipulates that the avaiMhi!ity of evaluators
in the sites correspond:,l_ to Ihe boxes displa>ed controls the shading of those boxes. The
scale is defined to run _rom 0 to 1.0. The specification for lines in the panel uses the
connection information reported for the net-output to determine line placement on the display,
When the status is retorted as :free. the connection information is dropped from the panel
and the correspondin_ li.es are removed.

13

/

- _, , ',"

," (, ''L

SIMPLE/CARE 2Q.lanuar> 1987

CARE OVERSEER

F._OIIt(2tOt AVgllQbtllty t N¢tWOtk COIla¢¢ttOll$

-=-_o _

io 2

_20

r_ 39 2

s0 ?,

_fiQ 2

PRODUCER LIMITED

Process Pogti,_

64

64

$1

S

_e%.,r (It

i,I)I_')" (It

I,I,P,,.T ((

i_)I"I,.I" (l

Fl)lff,.y f!

S _l'%x (!

S e'l)P%.)' (t 1

19_ttlg_ (1 2) tGT"_J) _;2_)

II_ITTI[]_ (1 3) 16WTJ) S'_)

Figure 12: Boxes and Lines Panel and Scrolling Text Panel

'((('JEvaluator Available") (0 1.0) (- 1 (:evaluator-load :busy))))
'((("Packet Trace") nil (:net-output-connection :points))

(("Packet Status") nil (:net-output-connection :status))
:find (find-and-remove ,#'eq (:net-output-connection :status) :free)))

Figure 13: Mappin_ Panel Specification

5.5 ,_erolling "l'exl I);mels

Son{elimes, the most ;)pp)'opriate way to thspla._)_ffo,'mation is to show it as text. Based on
a similar facility provided by the unde)l).ing Lisp system, the ._crulling text p_n¢l provides a
scrollable window into lines of text. In the rig.hi part of f,gure 12, the delay in each process
execution while wailing for somelh)ng to do. (hal i_. the eve)It lillle interval spenl waiting For
an appropriate task to appear on a certain stream of tasks, is shown togelher with the process
thai finally produced lhe ,qwa)ied work. lhls)_iIormatio)) is sorted so that the text lines
appear from the greal,csl Stleillll WiIll)ll,g inter_al to tile l_ast.

'((() ("-.4D ~A")
((fix (:stream-waiting :interval)) :.fir,_'t IYt'Id
(let" ((origins (packet-origin (:stream-waiting :packet)))

(origin (if (listp origins) (first origins) origins)))

(remote-address-local origin)))) :._ecu_tdfield
:send (sort-arrays ((,#'> (:stream-waiting :interval))) nil))

I"ig.rc 14: Producer Liln)ted Proce,_s Panel Specification

The values a))d foI'nlals used for dis!)la) I)) a scrollln_, text panel are deft)led much as in
previousl) det'i.cd panels. Formal control slron_zs take the place of' scale inf'ornlalio)1. As
usual, values are des_.))hed b_, a list of forms, each one of which specifies the transformations
to pe)forn_ on Inl'urilliHIU, rc_.e)_ed from prohe,,i. The example specification ill figure
14 shows lh_ g_.I|eralll) with which prohe lnfornlatlon _.'an be incorporated in Lisp expressions

14

SIMPLE/CARE 29 January 1987

to produce transformation specifications. The information used to generate the value for the
second field of the text display is based on the origin of the task packet that arrived on the
stream the process was waiting, for.

5.6 Noting Simulation Parameters

The CARE component models are parameterized through menu interaction as shown in
figure 15 to allow easy variation of their p_.rformance characteristics relative to each other.
Additionally, the site model parameterizes alternative routing strategies: directed, that is,
blocking when progress can not be made toward the goal; spiraling around the goal if progress
toward i_ is blocked; and dithering, that is, routit_g away from the goal even if only the last
link towards it remains to be acquired. The rate at which each site accepts application data is
also a parameter, the data rate and can be used b_r atl application to control ho_ h:trd it
drives the simulated system.

S 1MU1_t.t _.on P_r,._meter'_

Data Rate [_._]:
EvaluQtXon Overrz,_e [,._s]:
Stack Group Suitch Overrzde [,_m]:
Procesm Block Creatzon Overrxcle [_]:
Stack 8rouP CreatZon Overrtae [_s]:
Operator Wor,= Touch Tzme [_m]:
ComMun3._at ion C,._,:le'_:

Rout xng:

25.8
NIL
1,g
4.8
20,8
O ¢II.=

4
OIi_IECTEI:! SPlR.a.LINI_ DITNEFIIN_._

FiHure 15: Parameter Menu

Many of the CARE parameters are specified as overrides. If not specified, the corresponding
performance is take_l as measured on the simulation machine. Thus, the evaluation override,
that is, the time to perform an evaluation can be specified as non-nil in order to fix the time
that each user evaluation will take. (This is useful in making runs repeatable for debugging).
The time that it takes to switch context can he specified as the stack group switch override.
Similarly, the time tt; create a process control block and a stack context for that process _:an be
taken as given rather than measured by specifying respectively the process block creatio.
override and the stacA group creation override.

The time required for operator execution is modeled in terms of the number of words the
operator nlust manipulate irl handling a given message. The manipulation time pet' word is
specified by the ol.;erator word touch time. Lastly. the performance of the (;o111111UllJctllJOn

subsystem is specif_etl as communication cycle._. This is done in terms of the nlininlt, m
number of evaiuator data path clock times (that l._, event times) required for a 32-bit word to
pass a given point in the network. Thus the parametric specification, "4 communication
cycles", dictates that 8 bits ma_ cross such a boundar._ each time the evaluator passes through
one event time. If the communications path were narrower or the base communication clock
rate were lower, a higher number would be specified.

+

_J

ll:li:ll 31 Ol_ICt|| C_'ee+ _¢e_e_'lt|o_ I, Cteltlo_ +I_0+.i, CvltCn l+O_l, l+olultto_ 11_I, |I_+ I|_I

Figure 16: Annotation Panel

The Iitst example of SIMPLE panels ts the _mnotatio_l panel as illustrated i_+ figure 16, This

15

SIMPLE/CARE 29 Januar_ 1987

is used to (automaticall)) record the date, time, and parameters of the simulation run as well as
any other information the user chooses to ke._board into it,

5.7 An Instrument ._creen

All these panels are put together in an instrument screen according to a set or layout
constraints manipulated by the underlying window system. The f'i)lished screen might look like
figure i?. The iustrument screen is redrawn at a rate set by the user. By experience, it is
often better to update the screen at a frequency low enough to let the user interpret each
screen comfortably than at the maximum rate possible. This approach also restricts the
computing resources consumed b_, the instrumentation system. More focused approaches to
controlling instrwuentation load on the s.vstem include the ability to freeze selected panels and
discotmect selected probes during a simulation run.

PRODUC_._HTED

Pt_¢35 P_tti_ !

Ii l lllla _I l li1)lilll _l 11 iO'_) f_(_i_

qll _llllllfll_lll lil¢._i_)

_l Ilil, II ttl Illl-_l_lO_ e+ 1_ Ilqti IIHll

l=l _ (li tlritillliiil ,-_,i_) _tlq,
a,

Ill |ff'll Ill _.lfli (lll_l'_l|@l. i (1 11 *qltt) _ill41)

fARE OVERSEER

_elWtOt ANIl_bllify dl Hin)et_ C_¢/l_l

_0.'.

un n
E III
{ ill
Illin

!NOT[8:

PROCESS LATENCY

O/[Ot _t¢_f_¢¢r-COOJg,_tt Z.llllil)

1300 ,

a_0
i 200

g tO0

Oueuelng

oo

I:o
O_ERATOR - N_TWORK

¢t¢'.%' J Operator _oa¢

" "1.0
L

a 2 "0.0; , -q ix.

"sO 0.0

LISP LISTENER

[l'el),,i_i]

12)=2 !ir_ell ¢_ ,_(li!)$lil) i.l_ m err

l))ll_l
I_tltinl I, ffl$)J11)..0 ¢_al_ll_.

[)li_)

l[ll'ii_lilll-¢..IKl.I) O ;. ,it [l'ltiilll)'." '1

l-_li _'ll lrlllll))-Cl)_<tli*.'llrl@i_ ,4 [I T

,)tDl.l!i_l??tlt-_lh.l.ll It I ,*, [nl??li$,!

Itl-II , til l't_l?l'lll-._41_l(ll%_1"l(:lt_ ,; 2' i?

5_4#EI5 12:12:0"(3_) OIREn;_ED C,dcl_h R¢celer_ttton., ") Creation 7S0.0,..=, ".-,,ai_,:l_ 2.O,.i, E.,._l,jtti,._n -'e.O.)%.. 0_ 2e..O:_. =

_ggeltiOn$ Minus _ --*'V'nem".',,'_

Figure 17: Overseer Instrument

6 USING PROGRAM I)I_.VELOI'MENT TOOLS

The SIMPI.E/CARE ,_inlulalion sy_telll ns integrated into the underlying Lisp machine
program deveh)pnieilt _nvil'Olllllelll. Tile objects and data structures at both the componelit
model and appiicatioil language ilitcrfuce have abstractiot) interfaces that provide summar?

i 1(,

.. . , , "' , ,' ..
.... , . . ,, , ,, .) , , ,

.,, . . +,. . "' , , ,>

:...... ,L- _,._,;_"* :',' 2::; ':"_,' _ _;,_iA_, '-:=..' ,'-_''':_:,,.'", ''''' _I"',',, _., ,,, ,,,(, " "

SIMPLE/CARE 29 Januar) 1987

state information when the2y are displa._ed in text form. These text abstractions are "mouse
sensitive" in the development ma_.'hine environment and so _.-an be inspected at suct:essivel)
finer levels or" detail as desired.

In figure 18, the net-output t:ompunents of th_ site at grid coordinates (3 2). the particulars
of the net-output on the east side of the site (thut i_. net-output-3), and u SUll_lnar) of all
the sub-components of the site at (3 2) _Je being inspected. This same kind of view into the
progress of a simulation is provided in the debugging process and ma2,, as shown in figure 19.
refer to the conceptual entities of the application that is driving the simulated system.

CONSUMER LIMITED

T*p el O_je_t.

#(ART-Q-I 1 51436036)

_11.' O:. HET'QU;I_LII '3 i' 0: FFFE EI't0-OF-PAEr, Er
N

lr... N H(T-.)UrPIjt i) _ ' 1: cFEE EHD-Or-_'_O'.ET

Eli _: I_,HET-OUfPU? ,2 2, 2: t:'_['E EHO-0Fo_'ACI'ET

E1P. 3: WI'ItET-0uTPUT 13 2, ._: _RIT _- :_P_14!lllltJ ill

More Oh|act I_fle_t

Tep el O_JeCt

#(METoOUTPUT (3 2) 3: WAIT (-> :SPAWMNG (#(DTP-CLO i

CARE OVERSEER LISP LISTENER

n ¢o.j¢r. Of f l._uor ¢_p_: :II_T-OIjIPUT. F,jt_,:r. iO_ L.= 11

CRI;I_ : t COHPA_-IPOI HT : 3

CRRE : : PRCRET -ST RT U'.- : CRRE : :I.IRI T

CRRE::I ITERr;RL-BU:.: ,- :_PR_tlItIC_ I R 0IF'-CL0:LPE

Mere O_|ect Belew

:"Jr

n II_T-OUT_UT _ 2

,I,IIET-Ir#uT ,_ 2

lettem el Hlsttry

More (_|e_t Ake_'e

• Mst

q II_[T'I.'IUTPIJT _,_ -", _.: F;_[_.IIO'"_F';;I_:LgP

II HET-')UTPUT : _ 2, 2: FeEE E'ID-*._¢-g_,:LEf

q IIET-IHPIJT _. ;, 2: ¢'I_E_ FI_Ef fH_.;*')I_-_Ar.'}_T

I FIFO-_'!.IFFEP ,) ._, 0F'Sl:'ATOF _'3 t¢ .[_[gl(_: ;=(E I
R glFO*gUFFSP *_ 2, IIET-@.ITFI. It _":. '-_'E;AT'._: FrEE al

EUALIJRTOF: ,_ 2.: E_U".',Y It OPE;ATjP ,? z _U_."

N.HET'OUTIPUT '3 2 I I0: F_EE £HD-0r*PAC_ET

II'IIET-ItlPUT ,_ 2_ 1O: _EE FFEE Er_D-0F-_A_."_E?

II IIET*IIIPUT (3 ._' ?: F_EE F_'EE ;:IID'QF*PRJ_P.ET

It IIET-OUTPUT ,;I ._, O: fPEE .eld3-,)F-_o,Er

II.IIET-It#U! (3 2_ O: F_EE !_I_EE EIID-,3F-I_AO.E?

| FIFO-OUI!UE EVRLURTOR P.O OFEI_RIO_: II-I.'hj#,j_. O: HIL

Mere O_Ject melew

-e, .:Evil MACK..p C,)_p114 H '._11--. P._ ,Mere Hllttry Al_eve
Tracer Ooemnt F la..l n._

P_tfl'(tlt_ MOOIf't¢ _'.,:,l_f 17 qO,2e

It,ll

:t_ Y

,+o i
0

_OTES:

i'_o ".

i'_20 q

_30

r-] so _.

3o _.

90 ..

_ -TLek%*f-E'_IN-_R-
Z,'tteJ ?l¢_otk _ :'.$_tetO? .C%'¢,V

_0 " •

32' ". -'" "

Z._ •

e. |6 . ,
,j

] "'L
:+$)

I a ? 10 l_ 1:

_rror

O_ print4rlm_4a ° I @flm)_ea* _]

;8rt.qkpoi_t BRE._ PI($1r_.jI_ f.) ,;.)f,e,n

e, AR,',RT tO quit

SITE CORRELATION

.et_ \¢.,.-::_ _ .%t .'. +_*:t .* : "

1'0 t
E 0._
.7

0.6
H_

t

0.0
0. O I .'0

Og_tr .__: ,.-',r

0Dtr._..)r i

P/¢tw..,*k ._ .':,;_tc,'.'.t-Ev.. ;_, :.,: :..." "

t(s • • 1¢

;' 4 "" • d ;

0 II _

0 $¢, t ¢,0

'_Xe,jl._r.lo rim + (.+.;_

Figure 18: Inspet.'ting Simulated Components

In the example shown in figure 19, a distr'lbuter process running on the evaluator at site
(1 1) has made an improper call on the update-]ocale function during execution of its
:start method. It might have been appropriate to investigate this situation in terms of the
modeled components. That could be done, for example, using the debugger to inspect the
evaluator component, its enclosing site, related net-output components, or whatever else at the
component model level seemed relevant. In this _:ase, what was done was to use a few mouse
clicks to indicate i.terest in the source file for the dtstrtbuter :start method generating
the problem. It was brought up for review and control was then transferred to an editor using
the underlying program development environment as sht3wn in lift,re 20.

Because of the iluplementation system chosen for the realization of SIMPLE/CARE, at any
point in the simtdation, procedures either in the application or in the component models can
be modified, incrementally recompiled (within a few seconds), and be made effective for all

17

! +.+ ..

SIMPLE/CARE
29 January 1987

calls on them -- even those in the liiterrtfi3ted stuck rl-allle. Thus simulation execution can be
backed up to some previous point in the .-:tack frame and retried (given that its(error:dEalT side

effe_'ting code, if any, is safel_ re-executable).

30NSUMER LIMITED

Ptec_s Qn_

ZRO=D U (:ER LIMITEI

P t_¢ e.¢,_PO.:I

_OTES:
-',_?t86 10:43:{0 (2:

CARE OVERSEER]LISP LISTENER

II
Te F of Object

#(_TFIeUTER -417762fl6)
tn oOJtet: of fl.'Avor OISIRIBUTER. F,jnef:lon t_, IIcEO-HASH-_cPRA't' (Funeallztole) 3500637,

:ICF._'IOkILEDOE_e-tIT<_,• (_ (1. I.) (=_ DI_tRIBUTt*R P1Cr.tiOWLEOOt_MEHT$ 1573. 0 0))
_F.0UEST-'$TREAP: _" t,l. t.) _t_ 0[_TRtBtPTER 0lStRIBUTEI_-AEOUE_T¢ ¢$73. 0 0))

T_

Bottom et c_|ect

- Top or n_l s for torrent rrime | Top eL Loctis/51K_41t for, Currett frame
rg t (,OPE,'_HTIOH,)t :'_I'RRT [LO¢&I O _,COUHT_: t
Rrg l (SERVICE): II'$1H |tOTal l: _,DTpLLOCRTIUE ;_21_6535_
Rr9 2 (SERVERS): 20. IL¢.¢a_ 2: rllk
Rrg 3 (FUTURE): t (g. 2._ (= REOUESTOR REOI.JE_.T$-FUILo.:_I 3 tT_E-SITES;: PIIL

4 (L0=.';RLE _ ; 'tll LRrB |Local 4 (0BJECTJ: HIL

LO¢a_ 5 ,,TME-CLOCP;,-rIOW): HILBotto_ ef &rgS MIFe LK_tlt-Jele_"

Top el St_iCk
(EH:ITIVOI',E-DEBUOGER IIeEH:RRO-/'.'_B-ER_OR :COtrDltlOtt-tIR_E_ (EH:AEO-T'tPEoERROR ERROR COHDIrlOII SYSrEII:NR
(,%IGHRI..-COHOITIOt(IITEH:flR0-1YPE-EPR_R :COHI}[TI0|I-tIRflE_ (EH:ARG-T'tPE-ERROR ERROR C0ttnITl0tt _Y3TEt_:NROH
_.EH:FH-RPPkIER-IIO-RESTRRT ._IOfIRL-COItDITIOH (IIeEH:P'IRO-TYPE-EAPOR :COHDITIOH-NRME5 _EH.'RRO-T','PE-ERROR E
(AN: FOOTHOLD)
(uRDRTE-LOCRLE 'NIL)

-(II<DISTRIBUTER-417752S6. :._TflRT II'SIH 20. (' (2. 2.: '.=' REOUESrOR REOUESTS-FuruRE 27.3, 0 0_...
((:IHTERIIRL FLAVOR 0.) ;:START #°$11! 20. l" t2. 2.) (=_ REOUESTOR REOUESTS-FUTURE _73, O 0))...)
(FUHORLL IS_Z)TP-CL.OSURE -3_'_0q730: (:START R'SII1 20. ," (2. 2.) (=> REOuEStOR REOuESTS-FUTURE 27"_. 0 0
tCflREtUSER-EUflt.URTE _= It<OTP-Ct.OSURE -36364T30_ I;<nlSTRI_UTER -e,|?TS'_S$ 130_._ 1313.)
((:METHOD CRRE:EURLURTOR :RPPL':RULEB) :RPPLYRULE$ (: TRUE _B:._R-VRLUE I_<EURLURTOR r I . I • _: BUSY " CARE :
(#,_EVRLURTOR rl. I._: BUS'I" :_RI_L'.'RULES (:TRUE (S:BR-URt.UE _I'.EURLUR/OR (I. t.): BUS'.' C_RE:ltl-$ffltUS

hlore ,$t4¢k Below

tx_ 5e_rer, Ret_or t 1 _mn* e_. _e×r.I t,_ _f _tst_tY
Err,or, Rr,gltst E_tt] Petr,u Bk ExttJ ;;_Stack-FraRe UPDRTE-LOCRLE RC=SS.

[nsg¢¢¢ Outt Edtt[Re$u;e 8_, R11 I 11;3tack-Fr_ne (METHOD DISTRIBUTER ¢,TRPT) PC=tZ_
Hetp Flavlns ModlnzgJReturn Step I R, OIcJrRIBUTEF °4l??S_.*J8

Ob<] SO [MO,:fXfV _t.S_j | Be(tim ef Hitter7
' "T#RP_'the ftrst .srgunent to :LI ',tilde _, "_:LOt;RLE El. 3.)tO t2. l,)/0 ,*_. 3. ;/0 ,.+ '. ,_._t! ,:,f P.I__` ._ron 9 _,+lt:

_l_e Tuners, on exoeete_l _n array.

't,._pe Or mouse .._ fun,..P, lon tO e01[trill ._OOr,tS, t tO g'(_tt notntn,j_:
19pe or' ROUSe .5 nffss_ge nane for R.DI_TRIBUIER -41775_._f._':

I

I.I
I,I
I

Ii

Figure 19: Debu_tng A Simulation

i

SIMPLE/CARE 29 January 1987

CONSUMER LIMITED

(DEFMErHo0 (_TRI_rr_ :8TART) (_¢vtc_ sm'vors _ locale)

"Pmqu_t Orntlon of sir_n0rs and c_ntinue on to :recltmSt to walt"

(kit ((the-Mtn (loop for ouunt from 1 to _ oolkiot

(Ioml-site (qxkto-locAki locale)))))
(kit ((obJe¢t (rmfmmoe _._f)))

(wlmout-_ck

(formltt "OUtl_Jt-strmlm* ""&-x [dlstrfl_tor] "A"
(send (remote-site obJ_t) :loutish)

(mal_.ar N'(klmlxla (site) (_nd site :lo_tlon)) the-sites)))

(posting elquolt-stralaun to futurl as :rlqullts-ltrilaun)

(q_wning ((flav_¢ 'mwvor) :utart serv_.e ar, gno_kglglmm_t|) on the-sitmt
as m-v_)

(al_ly_ (:sequin;t) oct oOj_t as :dkitdMatm'-_tklg) ;fore' oDclUnuItlofl
obJeot)))

(OF, FMETHO0 (DIBTRIBUTEFI :RIEQUEBT) 0

=if the¢l'| an avllkl:_ server and a requelt, pass Out request; loop"

for response' • (a¢oept (flrst-p_ting aoknowkedgqm_mt|))
for (value ¢.lkmts tag) • (ar, o,ept (nlxt-postlr_ req_mst-ttresm))
do (postlr_ value to (po_tk_-r.Jkmts r_)

for (cons acknowledgem_ts r.lkmts) as tag)

(next-postk'_ acknQwlm:lglmqmts))) ;done with thll aP.knowl_lgem_t

(comph- ekivor -memodl dbtrBmtor)

OEFFLAVOfl 8ER_qEI:I ((_ (nine*stream :sorv_-r. quits))) O)

DEFMETHOO (BERVL_I :8TAAT) (oi_'atk_ aoknowkK_am_nta)
*8,rod back notle.e of avakl_t_
(kit' ((obJl_t (rmhmm(_ N(f))

(the-site (ramotm-site o_Jemt))

(thm-kx_tlon (_md the-Mte :loc41tion)))
(wltllout-_

(formlt *output-ltrllm* "'&'A "k = t_-k_cstk)n o_tk)n))
(lantlng '_tkdizad to a_ta for (hi m-visa) as me-kx;atlm)

(amine
(:r_qu_t operation the-k_atlon) on objlmt as :aerv_-oontlm_tlm)

I_Je_t))

[rIRC$ (_.tt.AlitD Pent-lOCk) OBJECT-GItIE$.LISP.ttEI_E$ _4) Font.: _ (Hl.l_B) t_
ReAaxng 2:_¢orle,,$x4_glll_OOdECT-$1HE$.L.lSP.4 (tnsr,411t_ version _,s 3) -- 51",

¢lloJ-_t¢_ef,$.

CARE OVERSEER LISP LISTENER

?.

t

IRRRY (Funcalla_1e) 3500637.

:rIEHT$ 1573. O O))
!-REOUEST$ |5?3. O 0))

rct

Top el talc_lll_Jl[m¢llls fir Currlalt Frtme
|1 0 (COUHT): 1
I1 1: R:DfP-L.OCR?IVE 221_653(_."
:I 2l NIL
:1 :_ (THE-SITES): NIL
_1 4 (OBJECT): NIL
tl 5 (THE-CLOCK-tlOMH HIL

Mere L_lls Below

1E$ (EH:ARO-?YPE-ERROR ERROR COHDZ?[OH $75TE_:_
(EH:RRO-?YAE-EAROR ERROR COHDITtOII _7$TE_:_RO/I

r_'PE-ERROR :COHOIT|OH-NA_E_ tEH:_RG-T','RE-ERPOP E

(a> REOUEBTOR AEOUEST$-FUTURE 273. 0 0))...
,> REOUE_TOR REOUEBTS-FUTURE 27:3. 0 0).',,.,)

(2. 2.) (=> REOUESTOR REOUESTS-FUTURE 273. O 0
rRIBUTER -,t17?5255, 13B9.) 1313.)
;CUE (B:BR-VRI.UE $_,EVRI.UA!'OR (1. I.): BUS'," CRRE:
_RI..UE _,:EVRLURTOR (1. I.): BUSY" CRRE; !H-$TRTU$
|elev

TulP el ISlster7
_PDATE-I.OCRLE POaSS"
(rlETHO0 _ISTRIBUTEI_ <;TART) ;'Cat23,
-41775_$6,

Ill, tit of HIItlI_

re

Tli

othtnB):

__.._J

Figure 20: Changing Application Code

19

SIMPLE/CARE 29 January 1987

7 CONCLUSIONS

The goals of simulation flexibility, and simulation environment completeness have been dealt
with in the ways described throughout this paper. In summary, the system is flexible in that it
supports:

• ArbitraD, data types and lengths in simulation. The information whose flow and
creation is controlled by simulated components may be of arbitrary complexity
-- from numbers and keywords to procedure bodies and execution environments.

• Instantaneous effect of definition change at both the application and component
modeling level (even during a simulation run).

• A broad range of instrumentation customization. Customizations ma_ involve
arbitrary expressions for probe data transformations, many to many probe to panel
mappings, information from summar._ analyses on one panel's data included in
another, and control of what state is saved and for how long.

• Separation of probe and component definitions to facilitate their independent
modification.

• An application language interface that is easily extended or changed without
recasting the information flow control described by the component behaviors.

While there is always room for additional capabilib °, SIMPLE/CARE is a usefully complete
system. It now includes:

• Supplied components for a network multiprocessor simulation with many of their
parameters customizable by menu interactions.

• A hierarchical structure editor that currently provides automatic grid and torus
composition operators. (Automated composition of richer topologies, such as
hypercubes, has been provided for in the basic design).

• A rule language that supports a synchronous design style without i.,icurring the
overhead of {naive) synchronous simulation.

• Method invocation For funct|onal simulation that is integrated into _he behavioral
simulation rule system and which provides for operations by and on both local and
hierarchically related components.

• Method specification design aids provided by the underlying program development
environment (for example, method dictionaries and quick access to method sources
from the debugging system).

• An evolved set of panel templates providing sorted, scrollable text lines as well as
self and fixed scaling, "two and a half" dimensioned, history sensitive clispla_s
which ma_ be scatter plots, strip charts, line graphs, intensity m,qps, and sigllc, I
animations.

We set off to build a multiprocessor simulation s_,stem with performance adequate for the
understanding of Inultiprocessor systems executing sig,ificant applications. The
SIMPLE/CARE simulation system has been used to study the operation of "expert systems" of
respectable size ['2]. DependiTlg on instrumentation load, these studies have involved
simulation runs from 20 minutes to several hours each. While faster would sttrel_ be better,
performance has proven adequate to these needs.

6A ht_lc)gram IJcltR'/. I'_1I t'%_lllll)Je, I_ Itbt I1(9_ hclllg _tdded to the _._')tell)

2()

SIMPLE/CARE 29 January, 1987

8 ACKNOWLEDGEMENTS

This work stands on the shoulders of its prede_.essor, [he Palladio s_stem, designed and
inlplemen[ed by Harold Brown and Gordon Fo_,ster. Our functional goals were more restrictive
than theirs so we had the luxury of design b._ simplification. Without their implementation
base, it would have been hard to know even where to begin.

Many hands and minds have conmbuted to the development of SIMPLE/CARE. We are
particularly indebted to the work of Russ Nakano who started off to do a simple learning
exercise and e,lded up doing a particularly careful modeling of a intricate signalling protocol.

References

I. Brown, Harold, Christopher Tong, and Gordon Foyster. "PALLADIO: An Explorator)
Design Environment for Integrated Circuits." IEEE Computer 16 (December 1983).

2. Harold D. Brow,J,. ffric Sclloen, and Bruce A. Delagi. An Experiment in Knowledge-Based
Signa! Understandin_ Usin_ Parallel Architectures. Tech. Rept. STAN-CS-86-1136 on"
KSL-86-69, Stanrox'd University, October, 1986.

3, Greg Byrd, Russell Nakano, and Bruce Delagi. A Point-to-Point Multicast Communications
Protocol. Tech. Rept. KSL-87-02, Knowledge Systems Laboratory, Stanford University, January,
1987.

4, Daniel Weinreb and David Moon. Lisp Machine Manual. Symbolics, Cambridge, MA,
1981.

21

